
SPRING 2025: MATH 540 EXAM I

You must provide all details to receive full credit. No calculators are allowed on this exam. Please put your
name on all pages that you turn in.

Statements. Define any terms you use in the statements below. (3 points each)

1. State the Fundamental Theorem of Arithmetic.

Solution. Every integer greater than one can be written uniquely (up to order) as a product primes numbers.

Comment The uniqueness part of the theorem is crucial, and took a substantial amount of work to establish.

2. State the Division Algorithm.

Solution. Given non-zero integers a, b, with a > 0, there exist unique integers q, r such that b = aq+ r, with
0 ≤ r < a.

4. State Euler’s Theorem.

Solution. If we let ϕ(n) denote the Euler totient function, the ϕ(n) is the number of positive integers less
than n and relatively prime to n. Euler’s theorem states that if gcd(a, n) = 1, then aϕ(n) ≡ 1 mod n.

3. Let X be a set with relation ∼. Define what it means for ∼ to be an equivalence relation. For x ∈ X,
define [x], the equivalence class of x and state a fundamental property of equivalence classes.

Solution. To be an equivalence relation, ∼ must satisfy: (i) x ∼ x; (ii) If x ∼ y, then y ∼ x; (iii) If
x ∼ y and y ∼ z, then x ∼ z, for all x, y, z ∈ X. Given x ∈ X, the equivalence class of x is the et
[x] : −{x′ ∈ X | x ∼ x′}. Given any two equivalence classes [x], [x′], either [x] = [x′] or [x] ∩ [x′] = ∅.
5. If n = pe11 · · · perr is a prime factorization, what are the values of τ(n) and σ(n), where τ(n) denotes the
number of divisors of n, and σ(n) denotes the sum of the divisors of n?

Solution. τ(n) = (e1 + 1) · · · )er + 1) and σ(n) =
p
e1+1
1 −1
p1−1 · · · per+1

r −1
pr−1 .

Calculations (10 points each)

1. Wilson’s theorem states that the positive integer p is prime if and only if (p − 1)! ≡ −1 mod p. Verify
Wilson’s theorem for p = 13.

Solution. Working modulo 13, we have

12! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12
≡ 1 · 2 · 3 · 4 · 5 · 6 · (−6) · (−5) · (−4) · (−3) · (−2) · (−1)

≡ 120 · 6 · (−6) · (−120)

≡ 3 · 6 · (−6) · (−3)

≡ 18 · 18
≡ 5 · 5
≡ 12

≡ −1.

2. Use the identification Zn → Za × Zb, for n = ab, with gcd(a, b) = 1, given in class to find all solutions in
Z15 to the equation x2 ≡ 4 mod 15.

Solution. In this case, we have the correspondence Z15
f→ Z3 × Z5. Note that both 2 and square to 4 mod

3, since 4 is congruent to 1 mod 3. Also, 2 and 3 square to 4 mod 5. Thus, in Z3 ×Z5, the ordered pairs (1,
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2), (1, 3), (2,2), (2, 3) square to (4, 4) = (1, 4). Under the correspondence f : 7 → (1, 2), 2 → (2, 2),
13 → (1, 3), 8 → (2, 3). Thus, mod 13, each of 7, 13, 2, 8 square to 4.

3. Find all solutions to 12x ≡ 20 mod 28 in Z28 and Z.

Solution. We first note that 12x ≡ 20 mod 28 means that 12x−20 = n28, for some n. Thus, 3x−5 = n7, so
that 3x ≡ 5 mod 7. Multiplying this equivalence by 5, we get x ≡ 25 ≡ 4 mod 7, so that x = 4 is a solution
to the original congruence equation. The other solutions are of the form 4 + 28

4 · k, with 1 ≤ k ≤ 3, so we
get that the full set of solutions are: 4, 11, 18, 25, modulo 28. Over Z, the solutions are: {7n+ 4 | n ∈ Z}.
Comment Note that it looks like we divided the original congruence equation by 4, but strictly speaking, we
did not do this, since 4 is not a unit mod 28. We translated the congruence equation to an integer equation,
and then divided by 4, and then transcribed the new integer equation to a congruence equation mod 7.

4. Verify Euler’s product formula and Gauss’s theorem for n = 1, 224.

Comment. Verifying Euler’s formula is not too difficult for 1224, however, I did not realize that 1224 has
24 divisors, and thus one must calculate ϕ(d) for 24 values, then add. SO: everyone got full value for this
problem.

5. Simplify 11183 mod 124.

Solution. Note that gcd(11, 124) = 1, so we may apply Euler’s theorem to conclude 11ϕ(124) ≡ 1 mod 124.
Here

ϕ(124) = ϕ(22 · 31) = ϕ(22) · ϕ(31) = 2 · 30 = 60.

On the other hand, 183 = 60 · 3 = ϕ(124) · 3. Thus, modulo 124 we have,

11183 ≡ 11ϕ(124) · 113 ≡ 121 · 11 ≡ −3 · 11 ≡ −33 ≡ 91.

Induction, well ordering and equivalence relations. (5 points each)

1. Use the Well Ordering Principle as stated in class to show that if S ⊆ Z is bounded below, then S has a
least element.

Solution. If S ⊆ N, then S has a least element by the Well Ordering Principle. If S contains negative
integers, let b be a lower bound and consider the set S′ := {s + |b| | s ∈ S}, i.e., S shifted |b| units to the
right. Then S′ ⊆ N, so that S′ has a least element s′0, by the Well Ordering Principle. Then s0 := s′0 − |b|
is a least element for S.

2. Use mathematical induction to prove that 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1, for all n ≥ 0.

Solution. When n = 0, the left hand side of the sum is 1, and the right hand side is 21 − 1 = 1, so the base
case holds. Suppose the statement is true for n − 1 Then, 1 + 2 + · · · + 2n−1 = 2n − 1. Adding 2n to both
sides of this equation we get

1 + 2 + · · · 2n−1 + 2n = 2n + 2n − 1 = 2 · 2n − 1 = 2n+1 − 1,

which is what we want.

3. Let X be the non-zero integers and define a ∼ b if and only if ab > 0, for a, b ∈ X. Show that this gives
and equivalence relation on X and identify the equivalence classes.

Solution. If a ∈ X, then a · a = a2 > 0, so a ∼ a. If a ∼ b, then ab > 0, so ba > 0, hence b ∼ a. Suppose
a ∼ b and b ∼ c. Then ab > 0 and bc > 0. Then a, b are both positive, or a, b are both negative. Similarly,
b, c are both positive or both negative. Suppose a, b are both positive. Then c must be positive, and thus,
ac > 0, so a ∼ c. The argument is similar if a, b are both negative. Therefore, a ∼ c.

Now, any two positive integers are equivalent to each other and any two negative integers are equivalent to
each other. Thus, there are just two equivalence classes, namely, [1] and [−1].

Proof problem. Give a rigorous proof of the fact that every positive integer can be written as a product
of prime numbers, i.e., the existence part of the Fundamental Theorem of Arithmetic. (20 points)
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Solution. Suppose the theorem is false. We seek a contradiction. Let X denote the set of positive integers
that cannot be written as a product of primes. By assumption, X ̸= ∅. Thus, by the Well ordering Principle,
X has a least element a. By definition of X, x is not prime. Thus, a = bc, for positive integers strictly
less than a. Since a is the least element in X, b, c ̸ inX. Thus, b is a product of primes and c is a product
of primes. Therefore, bc = a is a product of primes, contrary to a ∈ X. Thus, every positive integer is a
product of primes.

Comment. A very similar proof can be given using induction.

Optional bonus problems. Solutions to bonus problems must be essentially completely correct to receive

any credit.

1. Let p > 2 be a prime. Show that the equation x2 ≡ 1 mod p has exactly two solutions in Zp. (10 points)

Solution. Clearly 1, -1 satisfy the equation x2 ≡ 1 mod p. It’s important to note that since p > 2,
1 ̸≡ 1 mod p, so these are two distinct solutions. Now suppose a2 ≡ 1 mod p. Then (a+1)·(a−1) ≡ 0 mod p.
Thus, in Z, p | (a+1)(a−1). Since p is prime, p | a+1 or p | a−1. But then, a ≡ −1 mod p or a ≡ 1 mod p,
which gives what we want.

2. Show that a positive integer n is not prime if and only if ϕ(n) ≤ n−
√
n. (10 points)

Solution. Suppose n is not prime. We can write n = pe11 · · · perr , where p1 < p2 < · · · < pr, with r = 1 and
e ≥ 2 or r > 1 and each ei ≥ 1. We claim

√
n ≥ p1. Suppose this is true. Then we have 1− 1

p1
≤ 1− 1√

n
. If

r = 1 and e ≥ 2, we have ϕ(n) = n(1− 1
p1
) ≤ n(1− 1√

n
) ≤ n−

√
n. Suppose r > 1 and each ei ≥ 1. Then

ϕ(n) = n · (1− 1

p1
) · · · (1− 1

pr
) ≤ n · (1− 1

p1
) ≤ n · (1− 1√

n
) = n−

√
n,

Note that the first inequality follows from the fact that each 1− 1
pi

< 1.

To prove the claim, suppose n = pe, with e ≥ 2. Then clearly,
√
n ≥ p. Suppose r > 1. Then

√
n ≥ p

e1
2
1 · p

e2
2
2 =

√
p1
√
p2 · p

e1−1
2

1 p
e2−1

2
2 ≥ √

p1
√
p1 = p1.

For the converse, suppose n = p is prime. Then ϕ(n) = n− 1 < n−
√
n, which gives what we want.

3. Prove that if gcd(a, b) = 1, then aϕ(b) + bϕ(a) ≡ 1 mod ab. (10 points)

Solution. We use the correspondence from class: f : Zab → Za × Zb. Note that, taking canonical images
under f , we have,

f(aϕ(b) + bϕ(a)) = (aϕ(b) + bϕ(a), aϕ(b) + bϕ(a)) = (bϕ(a), aϕ(b)) = (1, 1),

the last equality following from Euler’s theorem. Since f(1) = (1, 1) and f is a one-to-one function, we must
have 1 = aϕ(b) + bϕ(a) in Zab, i.e., a

ϕ(b) + bϕ(a) ≡ 1 mod ab.
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